If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2=36
We move all terms to the left:
f^2-(36)=0
a = 1; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·1·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*1}=\frac{-12}{2} =-6 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*1}=\frac{12}{2} =6 $
| 16-7m=3 | | 1/4X+3/12=x/3 | | (7p-1)^1/3+11=7 | | 2x–4=3x-1 | | 16=n^2 | | 144=f^2 | | 20x2–100x=0 | | 2.2x-1.39=0.8x-2.37 | | 25=z^2 | | 8(5k+5)=0 | | .−7c−5=−8+c | | 15+40=x | | 1.8x+0.3=0.7x-1.46 | | 4p-5=235 | | -28.84=2.5y-5.34 | | 7x+3=24,5-4x | | 3(x+1)-8=22-6x | | 4n-31=2 | | (3x-5)+(3x-16)+19=90 | | -12.9=m/0.9 | | 1a+1=0 | | w^2+8w=-23 | | 3x-4x=-31 | | (3x-5)+(3x-16)+19=180 | | W^2+8w+2=-23 | | 15x+45=12.75 | | 13x+17=27 | | 153-6=-7(9j-3) | | 38=-2(z+14) | | 41-p=23 | | -11=-2x+7 | | -3x+4-2x=-5x+10 |